Klamath Basin Fisheries Collaborative 2024 Annual Meeting

June 12 - 13, 2024

Klamath Falls, Oregon

"If you want to go fast, go alone; If you want to go far, go together"

Use the meeting chat if you need assistance. Chats can be seen by all participants.

Please mute yourself when not speaking.

Use *6 to mute phone audio.

Use the microphone icon on the control bar to mute computer audio.

- [

U

Mic

1

Share

Virtual participants:

Please leave web cameras on to facilitate discussion Please use the chat to introduce yourself (name and affiliation)

In-person participants:

Please sign in on sheet

Please state your name/affiliation when speaking

ങ

People

(=)

Chat

ሌ

Raise

 \odot

React

⊞

View

If you are having problems with audio/video, check your device settings.

Welcome – Day 2

- Logistics
- Overview of the day
- Post meeting survey (QR code at end)

Timeline	Agenda items
8:30 am	Welcome/ Announcements
8:35 am	Presentations: Research & monitoring of fish- PIT and telemetry tagging
9:35 am	Interactive Discussion: Project Design
10:15 am	Break
10:30 am	Presentations: Research & monitoring of fish: Suckers
11:30 am	Adjourn
12:00 pm	Gather for field visit (registration required)

Presentations: Research and monitoring of fish - PIT and telemetry tagging

Chris Adams- Fish Wiz Juvenile Fish Passage at Youngs Point Fish Ladder on the Scott River

Juvenile Fish Passage at the Youngs Point Fish Ladder, Scott River CA

Dr. Christopher Adams, Fish Wiz LLC Siskiyou RCD Scott River Water Trust

05.25

Youngs Poin

Reaches adjacent to Youngs frequently disconnect during summer

Located between spawning/rearing areas and cold water streams that are used by some age-0 as over-summer habitat

Other age-0 remain in isolated pools

Google Earth

Ladder built in 2006 to facilitate upstream movement (primarily adults)

Flashboard dam to manipulate flow in main channel, ladder, and ditch

Background

As part of larger ranch plan,

Collaboration between Siskiyou RCD, Scott River Water Trust, Siskiyou Land Trust, Gareth Plank

Potentially modify existing structure, some additional water may be kept in-stream

Consultants Waterways and Fish Wiz LLC to evaluate structure and fish passage

Evaluate juvenile fish passage in summer What use of that water will maximize benefit to juvenile salmonids?

Provide passage for as long as possible

2022

Plan to PIT tag age-0 salmonids and monitor with antennas

Early disconnection, age-0 likely not large enough to tag before migration window

Utilized underwater cameras

Barlus 5mp camera housed in cinder block

Can run up to 8 cameras by ethernet cable to an NVR, data stored on hard drive

Al low light level, switched to infrared

Power supplied by solar panel/battery, then switched to AC per in Aug 2022

Video Review

0 and 14 hour reviewed for most days, one dark and one light hour, several days 12 hours of review (every other hour)

3 data point recorded for each hour

Total fish move into frame from outside frame (maximum possible individuals) Many may move back into view, counted multiple times

Max in one frame during hour (minimum possible individuals)

Reviewers estimated total, considering above and fish behavior

Video Review

High counts partly due to same individuals seen multiple times (hanging out)

Cam 2 tended to be individuals seen briefly during hour (movers)

After about July 15, minimal ladder use, still observations at base of ladder

Cam 3 no data second half of July

Video Review

2023

PIT tag age-0 salmonids and monitor with antennas

Velocity measurements in ladder

PIT tag antenna station (Fish Wiz LLC) installed on July 5, 2023, operated through October

3 antennas: downstream end, middle, and upstream end (downstream of flashboards)

		Downstream of Ladder			Upstream of Ladder				
	Species	Total	Mean FL	Min FL	Max FL	Total	Mean FL	Min FL	Max FL
	Coho Salmon	65	68	63	90	79	68	63	0
	Steelhead	2	63	63	63	3	65	64	67
1 6721	Speckled Dace	5	64	63	66	0			
e des	Sucker	1	263			0			

		Downstream of Ladder				Upstream of Ladder			
	Species	Total	Mean FL	Min FL	Max FL	Total	Mean FL	Min FL	Max FL
	Coho Salmon	65	68	63	90	79	68	63	0
	Steelhead	2	63	63	63	3	65	64	67
572 1	Speckled Dace	5	64	63	66	0			
Selen.	Sucker	1	263			0			

	Total Detected in	Tagged	Tagged	
	Ladder	Downstream	Upstream	
Coho	8	1	7	
Steelhead	1	0	1	

Relatively few tagged fish detected in ladder

Several coho tagged upstream entered ladder from downstream end

CFS	1.85	4.477+	
Flash Boards In	2	1	0
Baffle 1 Mean Velocity in Crest (fps)	1.12	2.88NA	
Baffle 17 Mean Velocity in Crest (fps)	1.76	3.26	3.12

At lowest flow, velocities over 1 fps

Conclusion/Recommendation

Analysis still ongoing

Ladder not sufficient or being utilized for substantial juvenile movement during low flow period for upstream juvenile passage

Remove Ladder/ Reprofile dam?

Further study on environmental conditions/fish behavior

Summer Burdick- USGS

Insights from Acoustic Telemetry Studies on the Influence of Flow Dynamics on Juvenile Chinook Salmon Migration in the Lower Klamath River

Variation in Chinook Outmigration Timing and Survival Through the Lower Klamath River in 2023

Summer Burdick, Collin Smith, Russ Perry, John Plumb, and Tyson Hatton U.S. Department of the Interior, U.S. Geological Survey

Klamath Basing Fisheries Collaborative Klamath Falls, Oregon

June 11-13, 2024

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Acknowledgements

Funded by U.S. Bureau of Reclamation Toz Soto and Alex Corum (Karuk) Leanne Knutson, Oshun O'Rourke, and Andrew Antonetti (Yurok) Morgan Knechtle and Domenic Giudice (CDFW) Ryan Tomka (USGS)

Recent Goals of Flow Regulation in the Lower Klamath Rive

- Reduce outmigration mortality of juvenile salmonids
 - Manage C. shasta (flushing flows)
 - Decrease juvenile Chinook residency in the river
- Manage habitat availability for juvenile Chinook
 - Stream Salmonid Simulator (S3)

3

For juvenile Chinook in the lower Klamath River:

Does outmigration rate vary across the spring season?

How does outmigration rate and timing effect survival?

Tag Release Summary 2023 (N=556,11 groups)

		Week			
Release	Tag	10-May	17-May	24-May	1-Jun
Shasta	SS400	100	100	100	100
Shasta	ELAT			25	25
Kinsman	ELAT	12	29	11	
Iron Gate*	ELAT			25	25

*Iron Gate fish were hatchery origin. All others are run of river fish.

Photo taken by Georgia Martin, USGS

Tag Life

 15 tags of each model and shipment batch

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Fork Length by Week

Travel Time from Release, by Release Date, for SS400-tagged fish released at Shasta

Travel Time From Release, by Release Date for IGH Fish

Travel Rate by Reach, Release Site, and Tag Type

Preliminary Survival Estimation

- Survival was estimated using space-for-time Cormak-Jolly-Seber Models (Skalski et al. 1998)
 - Assumes downstream directional movement
 - Capture history is constructed across receiver locations (1=detected, 0=not detected)
 - Accounts for imperfect detection
 - Tag battery failure is not accounted for, and if it occurs will cause negative estimates of survival

Travel Time to Mouth SS400-tagged fish and SS400 Tag Life

Time to Mouth and ELAT Tag Life

Detection Probability for SS400-Tagged Fish Released at Shasta

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Survival of SS400-Tagged Shasta Fish

Survival by Reach, Release Group for SS400-Tagged Shasta Fish

Cumulative Survival of Shasta SS400 tagged juvenile Chinook

Important Take Aways

- Fish released later moved faster than fish released earlier
- Survival from Shasta to the mouth was a little bit better for faster moving fish than slower moving fish
- The duration in delayed movement for Iron Gate after hatchery release varied among release dates

Next Steps

- Extend analysis to include 2022-2024 data
- Model effects of size, flow, and release group on outmigration timing
- Use tag life curves in a multistate model to correct for short battery life of the ELAT tags

QUESTIONS ?

Subject to Revision. Not for Citation or Distribution.

Nate Banet- Real Time Research Avian Predation: A Synopsis of Methods and Results from Studies in the Klamath River and Columbia River basins

Avian Predation:

A Synopsis of Methods and Results from Studies in the Klamath and Columbia River Basins

June 13, 2024 Klamath Basin Fisheries Collaborative Annual Meeting

Acknowledgments

Authors: Nate Banet*, Quinn Payton, and Allen Evans

Funding:Bonneville Power AdministrationU.S. Army Corps of EngineersGrant County PUD & Priest Rapids Coordinating CommitteeU.S. Bureau of Reclamation

Collaborators: U.S. Geological Survey NOAA Fisheries U.S. Fish and Wildlife Service

Background

- Avian predation research initiated in late 1990's in Columbia River Basin & 2000's in Upper Klamath Basin
- Four primary species investigated (Caspian terns, double-crested cormorants, California/ring-billed gulls, and American white pelicans)
 - Nesting occurs over a broad geographic area within each region
 - Nesting overlaps with salmonid outmigration period (April September) in the Columbia basin & the spawning period for suckers in Upper Klamath basin (April – May)

Colony Locations in the Columbia River Basin

Colony Locations in the Upper Klamath Basin

PIT Tag Recovery on Bird Colonies

Recoveries of PIT tags on colonial waterbird breeding sites can be used to estimate predation impacts

Avian Predation Rates

Avian Predation Rates

- Output: predation rate or probability (% or proportion of available fish consumed)
 - Species/population/stock
 - Sample sizes often large, offering good precision
 - Relative susceptibility of tagged groups
 - Relative susceptibility of fish with different intrinsic characteristics
 - Predation rates in the context of survival rates
 - Non-invasive or passive technique (recovery tags after the breeding season)

Hostetter et al. (2015)

PIT Tag Recovery - CRB

- > 1.5 million fish PIT tags recovered from bird colonies since 1999
 - > 50 individual nesting and loafing sites scanned
 - 11 species recovered (e.g., Chinook, coho, sockeye, steelhead trout, cutthroat trout, bull trout, northern pikeminnow, smallmouth bass, white sturgeon, Pacific lamprey, and shad)
 - All tagged salmonid populations, run-, and rear-types recovered; including juvenile and adult salmonids (up to 760 mm in length)

PIT Tag Recovery - UKB

- > 5,000 fish PIT tags recovered from bird colonies during 2009 -2023
 - Half of recovered tags were from 2021 2023
 - > 20 individual nesting and loafing sites scanned
 - 6 species recovered (Lost River sucker, Shortnose sucker, Klamath largescale sucker, Redband trout, Chinook, Clear Lake hitch)
 - Adult Lost River suckers up to 730 mm in length

Examples of Predation Rate Results

Predation Rates – Columbia River Basin

Hostetter et al. 2023

Predation rates vary by fish species, fish population, and colony

Predation Rates – Upper Klamath Basin

Location	Sucker Group	Annual Average	Annual Range
Upper Klamath Lake	Adult LRS	0.5% (0.2–1.1)	0.1% - 1.1%
Clear Lake Reservoir	Adult LRS	2.5% (0.6–5.5)	0.4% - 7.2%
Upper Klamath Lake	Adult SNS	1.8% (0.5–4.0)	0.4% - 3.7%
Clear Lake Reservoir	Adult SNS/KLS	2.8% (0.9–4.0)	0.6% - 6.2%
Upper Klamath Lake	Juvenile (wild)	10.1% (4.8–19.0)	10.0% - 10.1%
Upper Klamath Lake	Juvenile (SARP)	4.9% (3.9–8.2)	4.3% - 8.5%
Clear Lake Reservoir	Juvenile (wild)	6.8% (2.1–15.2)	4.3% - 10.5%

Evans et al. 2022

What factors influence avian predation on juvenile salmonids?

Prey availability

Fish species and ESU/DPS

Fish size and condition

Environmental factors (e.g., flow)

Colony location and size

Fish rear-type

Fish run-timing

Other factors

Colony Location and Size

PIT-tagged Upper Columbia Steelhead, 2007-2015

BRNW (2015); Evans et al. (2016a)

Predation based on sucker length

Adult LRS ~ 300 to 800 mm Adult SNS ~ 250 to 600 mm Juveniles < 250 to 300 mm

Evans et al. (2016)

Hotspots of Predation – CRB

Evans et al. 2024

Hotspots of Predation – UKB

- New groups of SARP suckers are being released in new locations such as Sheepy Lake in 2023
- Emerging predation hotspots on different release groups can be identified with consistent PIT-tag recovery efforts

Sheepy Lake Island – May 28, 2024

How do measures of avian predation relate to fish survival?

- Cumulative mortality relative to mortality due to avian predation
- Spatially-explicit (e.g., river reach) and temporally-explicit (e.g., week) total mortality and mortality due to avian predation
- Relationship between avian predation and survival (e.g., additive versus compensatory)

Total Mortality and Mortality Due to Avian Predation - CRB

Steelhead Passage from Rock Island Dam to Bonneville Dam

Evans et al. 2022

Relationship Between Avian Predation and Survival

Steelhead Passage from Rock Island Dam to Bonneville Dam

• Statistically significant relationship within and across years

- Payton et al. 2020
- Years with more variation in levels of predation among weeks are associated with better fits

Mark-Recapture-Recovery: Survival Studies

PIT tag recovery data on bird colonies is an under-utilized source of information that can increase the precision and accuracy of fish survival estimates

Payton et al. (2023)

Summary

- Recoveries of PIT tags on bird colonies can provide valuable information on where, when, and how many fish die in space and time.
- Predation by colonial waterbirds, although not the original cause of salmonid and sucker declines, can be a substantial source of mortality in some years.
- Recoveries of PIT tags on bird colonies can be used to investigate factors that influence the susceptibly of fish to predation.
- Recoveries of PIT tags on bird colonies can be used to increase the precision and accuracy of survival estimates by increases sample sizes of tagged fish with known fates.

Bird Research Northwest

nate.banet@realtimeresearch.com allen@realtimeresearch.com

www.birdresearchnw.org

Interactive Discussion – Project Design

Jacob Krause- USGS Brian Hayes- USGS 5 Components of a Successful PIT Tag Study

Please contact Jacob Krause (<u>jrkrause@usgs.gov</u>) for more information about this presentation.

5 components of a successful PIT tag study

Jacob Krause and Brian Hayes USGS Western Fisheries Research Center Klamath Falls Field Station

U.S. Department of the Interior U.S. Geological Survey The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Break 10 minutes

Research and monitoring of Suckers- PIT and telemetry tagging

Shelley Johnson- USGS Seasonal detections of PIT-tagged suckers in Pelican Bay, Upper Klamath Lake, OR

Please contact Rachelle Johnson (rachellejohnson@usgs.gov) for more information about this presentation.

Seasonal detections of PITtagged suckers in Pelican Bay, Upper Klamath Lake, OR

Rachelle C. Johnson¹, Jacob Krause¹, Brian Hayes¹, and Mark Hereford²

Klamath Basin Fisheries Collaborative Annual Meeting, Klamath Falls, OR June 13, 2024

> ¹US Geological Survey, Western Fisheries Research Center ²Oregon Department of Fish and Wildlife

U.S. Department of the Interior U.S. Geological Survey

Disclaimer: This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Ryan Bart- The Klamath Tribes Ambodat Sucker Rearing Strategy

Ambodat Sucker Rearing Strategy

Ryan Bart Ambodat Fish Biologist ryan.bart@klamathtribes.com

C'waam-Lost River Sucker

Koptu-Shortnose Sucker

Red – Under Construction Blue – Existing Ponds H – Hatchery

Capacity 1000lbs/AF

Pond	Volume	150 mm Capacity	300 mm Capacity
L1	0.75 AF	9,937	1,239
L2	1.44 AF	19,014	2,371
L3	0.36 AF	4,788	597
L4	0.25 AF	3,297	411
U1	0.50 AF	6,566	819
U2	0.45 AF	6,012	750
N1	0.75 AF	9,937	1,239
N2	0.75 AF	9,937	1,239
N3	0.75 AF	9,937	1,239
Total	6.75 AF	59,551/89,362	7,426/11,143

Collection

Gamete Collection

- East Side Springs (Cwaam)
- Williamson River (Koptu)

► Fry Collection

 Williamson River (Cwaam and Koptu)

Released

2023 Release Events 10/20 – 10/31

Chiloquin Dam ▶ n = 116 ▶ Ave TL = 227 mm (SD = 44.45) Henzel Park ▶ n = 563 ► Ave TL = 92 mm (SD = 28.25) **Beatty Gap** ▶ n = 279 ► Ave TL =161 mm (SD = 12.51)

Data Collected

- Release Date
- PIT Tag
- ► Fin Clip ID
- Total Length
- Weight
- Release Location
- Harvest Date
- Harvest Pond
- ► Notes (Afflictions, Deformities, ect...)

Strategy

- Focus on rearing suckers to 300 mm or greater to increase survival
 - Adapt based on best available science
- Explore release methods
- Safeguard Species
 - Identify locations and start auxiliary populations
 - Redundant captive populations

Questions?

Ryan Bart Ambodat Fish Biologist ryan.bart@klamathtribes.com

McKenzie Wasley USFWS Sucker Assisted Rearing Program Post Stocking Monitoring

USFWS Sucker Assisted Rearing Program: Post Stocking Monitoring

U.S. FISH & WILDLII

SERVICE

Klamath Falls National Fish Hatchery

Klamath Falls Fish and Wildlife Office

Josh Gondek – Fish Biologist

McKenzie Wasley – Biological Science Technician

SARP Background

- Rear endangered/Upper Klamath Basin endemic species
 - Shortnose Sucker (koptu)
 - Lost River Sucker (c'waam)
- Cultural significance to The Klamath Tribes
- Long lived species (~25-40 years)
- Reach sexual maturity at 5-9 years
- Current adult population was born in early to mid 90's
- Low to zero survival of juvenile suckers
- Annual goal of releasing 60,000 fish @ 200 mm to stabilize the population

SARP Stocking

- Collect suckers in larval stage
 - Treat with formalin and salt for four days
 - Intensive rearing for 30 days or directly into pond
 - Raised in ponds for 16-22 months
- Release in the fall and spring
 - Before release scan PIT tag, record total length, weight, and stock location
- Assist BOR with canal salvage operations

SARP Stocking

Fiscal Year	Larvae Collected	SARP Release	TL (mm)	Salvage Release
2016	4,134	*	*	*
2017	8,730	*	*	*
2018	9,544	2,355	147	784
2019	24,426	4,497	189	1,586
2020	40,603	11,774	223	1,928
2021	106,710	13,394	208	1,689
2022	51,929	12,768	193	*
2023	6,036	17,783	199	436
2024	~20,000	9,134	222	613 (188)
Total	~272,112	71,705		7,224

Post Stock Monitoring

- USGS PIT arrays- refugial habitat, spawning grounds, tributaries, Link River exiting the lake
- USFWS- Supplemental submersible antennas at stocking locations
- USFWS- Raft antennas to active search wetland habitat
- USFWS Radio Telemetry

USFWS Radio Telemetry

• Investigate post-stocking survival and inform recovery efforts

- 2018 and 2019 Project
 - Tags active Tues./Thurs.
 - Mortality signals in tags
 - Shoreline tracking, transects across lake, aerial surveys
- Current Project 2021-2026
 - 24/7 tag activation
 - No mortality feature
 - Remote stations and aerial surveys

Tagging History

- Total fish tagged
 - 928
- Number currently detectable
 - 401
- Lotek Freshwater Nanotags

Activation Date	Tag Type	Quantity	Ping Interval (sec)	Battery Life (days)	Expiration
Mar-22	NTF-5-1	147	10	357	Mar-23
Oct-22	NTF-6-1	269	10	525	Oct-23
Apr-23	NTF-5-2	111	10	357	Apr-24
	NTF-6-1	151	10	525	Sep-24
	NTF-5-2	117	10	357	Oct-24
Oct-23	NTF-6-1	114	10	525	Mar-25
	J-CART-14- 12	19	10	497	Wiai-2.5

Tagging Demographics – koptu (SNS)

- Total SNS tagged
 - 533 → Juvenile = 339, Sub-Adult = 159, Adult = 35

	USFWS Radio Telemetry Release Location and Fish Demographic Summary - SNS													
Date	Time	Location Name	Location Coordinates	Number Tagge Relea	Number of Radio Tagged Fish Released		Average Length (mm)	Length (mm) Range	Average Weight (g)	Weight (g) Range	Age Class at Stocking			
3/16/2022	18:00	TNC Boat Ramp	42.493934, -121.936597	7	1	2020	195	162-226	92	55-152	juvenile			
3/18/2022	19:30	Henzel Park Boat Ramp	42.529530, -121.92951	4	46		195	164-234	90	59-140	juvenile			
10/28/2022		Henzel Dark Boat Ramp	42 520530 -121 02051	22	11	2021	196	190-212	69	60-80	juvenile			
10/20/2022		Tienzei Faik Doat Kamp	42.329330, -121.92931	22	11	2019	302	272-337	282	220-396	sub-adult			
11/2/2022		TNC Boat Ramp	42 403034 -121 036507	44	24	2021	197	188-223	76	57-107	juvenile			
11/2/2022		INC Boat Kamp	42.495954, -121.950597	44	20	2019	302	260-356	284	200-378	sub-adult			
1/28/2023	12.18	Mid Lake	42 400350 121 021236	182	124	2021	209	132-255	94	66-145	juvenile			
4/20/2023	15.10	WIIG-LAKC	42.400330, -121.921230	102	58	2020	227	205-263	120	82-184	juvenile			
					5	2021	305	275-326	311	216-399	juvenile			
10/27/2023	12.20	Mid-Lake	42.400350, -121.921236	168	128	2020	312	275-343	332	222-462	sub-adult			
	12:30				34	2019	338	286-393	420	255-640	adult			
					1	2018	405	-	601	-	adult			

86

Tagging Demographics – c'waam (LRS)

- Total LRS tagged
 - 392 \rightarrow Juvenile = 388, Sub-Adult = 4

	USFWS Radio Telemetry Release Location and Fish Demographic Summary - LRS													
Date	Time	Location Name	Location Coordinates	Number of Radio Tagged Fish Released		Capture Year	Average Length (mm)	Length (mm) Range	Average Weight (g)	Weight (g) Range	Age Class at Stocking			
3/16/2022	18:00	TNC Boat Ramp	42.493934, -121.936597	1	17	2020	192	175-221	80	57-108	juvenile			
3/18/2022	19:30	Henzel Park Boat Ramp	42.529530, -121.92951	1	13		196	182-236	90	72-140	juvenile			
10/28/2022		Hanzal Dark Doot Domn	42 520520 121 02051	05	76	2021	197	180-215	64	55-89	juvenile			
10/20/2022		Tienzei Faik Boat Kamp	42.329330, -121.92931	95	19	2019	310	268-346	257	166-417	juvenile			
11/2/2022		TNC Boat Ramp	42 402024 121 026507	108	84	2021	200	188-226	68	51-106	juvenile			
11/2/2022		The Boat Kamp	42.493934, -121.930397	108	24	2019	317	275-362	280	155-418	juvenile			
1/28/2022	12.18	Mid Laka	42 400250 121 021226	80	76	2021	213	190-249	85	63-137	juvenile			
4/20/2023	15.10	Mid-Lake	42.400350, -121.921250	80	4	2020	225	215-235	102	79-122	juvenile			
					52	2021	297	265-315	236	236-398	juvenile			
10/27/2022	12.20	Mid Laka	42.400350, -121.921236	79	23	2020	321	279-379	309	174-478	juvenile			
10/27/2023	12:30	Mid-Lake			3	2019	353	300-387	423	234-536	sub-adult			
					1	2018	402	-	607	-	sub-adult			

87

Data Collection

• Remote Stations

USFWS Remote Radio Telemetry Station and Stocking Locations 531 858 Chiloquir Upper Klamath National Wildlife Refuge 531 227 ft **Rocky Point** 6553 ft Mount Upper Klamath Harriman Spence Legend ★ Stocking Locations Year(s) Station was Active ♦ 2022 2023 \diamond 2024 140 ♦ 2022, 2023 math Falls ♦ 2023, 2024 ♦ 2022, 2023, 2024 Oregon 566 Parks, State of Oregon GEO, Esri, TomTom, Garmin, SafeGraph, METI/NASA, USGS, Bureau MitbladdManagement, E&A, NFG Keno USDA, USFWS, Esri, NASA, NGA, JKSS 5 Miles Valley

Data Collection

- Aerial Surveys
- Four flights per month
- Expanded 2024-2026 flight path

What's Next

- Detection efficiency and tag deposition studies
- Continue work with RTR to streamline QAQC and produce final data set for analysis
 - Results anticipated in fall 2024
- No additional tagging
 - Limited availability of taggable fish
 - Post-stocking survival concerns
 - Investigating cost benefit of transitioning to acoustic tags

Acknowledgements

– BUREAU OF – ECLAMATION

science for a changing world

g Consulting *innovation. collaboration. solutions.*

AMATH

MODOC

REAL TIME RESEARCH

joshua_gondek@fws.gov mckenzie_wasley@fws.gov

Supplemental Slides

Construction Updates

- Current Pond Space- 22 Ponds
 - 0.705 Surface Acres
- Spring 2024- 10 new ponds online
 - 4- 1/8 Surface Acres
 - 6- 1/4 Surface Acres
- Fall 2024- 12 new ponds online
 - 6- 1/4 Surface Acres
 - 7- 1/2 Surface Acres
 - Well Drilled ^O
- 2025- Building Should be Finished
 - 2-1/2 Surface Acre
 - 6- 1/12 Surface Acre
 - Maintenance Building
 - Admin/Hatchery Building

Data Summary – Remote Stations

Detection History for 2022 Releases (SNS & LRS)														
Release Date	Location	Detected at Least Once	Redetected	Never Detected	Total									
3/16/2022	TNC Boat Ramp (Williamson)	85	81	3	88									
3/18/2022	Henzel Boat Ramp (Agency)	44	41	6	50									
10/28/2022	Henzel Boat Ramp (Agency)	93	83	24	117									
11/2/2022	TNC Boat Ramp (Williamson)	106	95	46	152									

Detection history from all sources (plane, station, boat, truck) for 2022 releases.

Detection History for 2023 Releases (SNS & LRS)														
Release Date	Location	Detected at Least Once	Redetected	Not Yet Detected	Total									
4/28/2023	Mid-Lake	148	115	118	266									
10/27/2023	Mid-Lake	145	75	105	250									

Detection history from all sources (plane, station, boat, truck) for 2023 releases.

Data Collection – Aerial Survey

Map of test tag (white) and the plane locations where the test tag was detected (purple), each labeled with the signal strength of the receiver during the given detection.

	Signal Strength	Latitude	Longitude	Distance (m)
229.00				
	70	42.34184	-121.892	1167
	90	42.34497	-121.895	776
	07	42 24042	424 000	476
	97	42.34843	-121.899	476
	106	42.35174	-121.897	116
	64	40.00101	171 000	717
	64	42.35191	-121.888	/1/

Expanded flight path for 2024-2026.

Full area covered by a routine aerial survey and additional coverage during a bi-annual avian colony surveys.

Data Summary – Aerial Surveys

Month & Year	No. of Flights	Unique SNS Detections	Unique LRS Detections	Total Unique Detections
April 2022	2	63	17	80
May 2022	4	81	18	99
June 2022	4	42	11	53
July 2022	4	40	16	56
August 2022	3	37	11	48
September 2022	4	37	9	46
October 2022	4	33	8	41
November 2022	0	-	-	-
December 2022	2	72	97	169
January 2023	2	41	64	105
February 2023	2	51	83	134
March 2023	4	61	101	162
April 2023	0	-	-	-
May 2023	5	121	140	261
June 2023	1	29	37	66
July 2023	0	-	-	-
August 2023	3	62	88	150
September 2023	5	69	94	163
October 2023	1	33	37	70
November 2023	2	134	94	228
December 2023	2	75	86	161
January 2024	2	71	64	135
February 2024	4	130	86	216
March 2024	3	101	81	182
April 2024	3	137	94	231

Number of flights per month and unique detections for each species per month.

Data Management

		Α		В		C	:	D	E	F	G		Н		J	K		L	
6	1	FullTagID) Detec	tionD	ate	Time		Source	Station	SigS	tr Gain	Lat	itude	Longitude	Freq	Species	PIT		
22	2	320-15	3	/16/2	022	22:5	3:21	Station	Williamsor	nLat 💦	80 8	0 42	2.4652	-121.9581	164.3	SNS	3DD.0	03D7C3	3712
3	3	320-21	3,	/16/2	022	22:5	2:41	Station	Williamsor	nLat 1	03 8	0 42	2.4652	-121.9581	164.3	SNS	3DD.0	03D7C3	883C
2	4	320-58	3,	/16/2	022	22:5	9:18	Station	Williamsor	nLat 1	03 8	0 42	2.4652	-121.9581	164.3	SNS	3DD.0	03D7C3	34E2
	5	320-88	3,	/16/2	022	12:0	9:37	Station	Williamsor	nLat 2	08 80	0 42	2.4652	-121.9581	164.3	LRS	3DD.0	03D7C3	6A3
	6	320-95	3,	/16/2	022	23:1	5:51	Station	Williamsor	nLat 1	18 8	0 42	2.4652	-121.9581	164.3	LRS	3DD.0	03D7C3	84C9
	7	320-104	3	/17/2	022	21:2	3:39	Station	Williamsor	nLat	72 8	0 42	2.4652	-121.9581	164.3	SNS	3DD.0	03D7C3	4EB
	8	320-108	3	/17/2	022	3:0	4:25	Station	Williamsor	nLat 1	22 8	0 42	2.4652	-121.9581	164.3	SNS	3DD.0	03D7C3	4D0
3	13	Trank?	1008	139	聖旨	131.3	1. 8.	1973	· · · ·	Select and		5 93	1	121121	NE CO	Parts.	SCEP.	212	1
	N	N	N	0		P	Q	R	S	T	U		V	W		X	Y	Z	AA
Sto	ckingl	Location Sto	ockingDate	Count	Stron	gestSig	diffs	PrevTag	FalseDetections	WeightgTOT	Lengthm	mTOT	Detection	n StockingYearM	onth SigSt	rAbv80 Sig	StrAbv60	PreStockD	etect
TNO	CWilli	amson	3/16/2022	1	Y		20) 58	N	71		183	202203	3 20	2203 Y	Y		N	
TNO	Willi	amson	3/16/2022	7	Y		1	l 58	N	104	•	210	202203	3 20	2203 Y	Y		N	
TNO	CWilli	amson	3/16/2022	115	Y		20	58	N	91		189	202203	3 20	2203 Y	Y		N	
TNO	CWilli	amson	3/16/2022	285	Y		794	88	N	76	i	191	202203	3 20	2203 Y	Y		N	
TNO	Willi	iamson	3/16/2022	2	Y		412	2 58	N	64	ł	191	202203	3 20	2203 Y	Y		N	
TN	Willi	iamson	3/16/2022	2	Y		329	9 104	N	114	•	220	202203	3 20	2203 N	Y		N	
TN	Willi	iamson	3/16/2022	21	Y		20	108	N	152		223	202203	3 20	2203 Y	Y		N	
TN	willi	amson	3/16/2022	21	Y		20) 122	N	78		173	202203	3 20	2203 Y	Y		N	

Meeting Survey

Klamath Basin Fisheries Collaborative 2024 Annual Meeting

Site Visit

Klamath Basin National Wildlife Refuge and Avian Refuge Tour

Meet outside for charter bus

Lunch provided

Thank you! Meeting Adjourn

